首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:An Approximate Likelihood Procedure for Competing Risks Data
  • 本地全文:下载
  • 作者:Akio Suzukawa
  • 期刊名称:JOURNAL OF THE JAPAN STATISTICAL SOCIETY
  • 印刷版ISSN:1882-2754
  • 电子版ISSN:1348-6365
  • 出版年度:2010
  • 卷号:40
  • 期号:2
  • 页码:239-263
  • DOI:10.14490/jjss.40.239
  • 出版社:JAPAN STATISTICAL SOCIETY
  • 摘要:Parametric estimation of cause-specific hazard functions in a competing risks model is considered. An approximate likelihood procedure for estimating parameters of cause-specific hazard functions based on competing risks data subject to right censoring is proposed. In an assumed parametric model that may have been misspecified, an estimator of a parameter is said to be consistent if it converges in probability to the pseudo-true value of the parameter as the sample size becomes large. Under censorship, the ordinary maximum likelihood method does not necessarily give consistent estimators. The proposed approximate likelihood procedure is consistent even if the parametric model is misspecified. An asymptotic distribution of the approximate maximum likelihood estimator is obtained, and the efficiency of the estimator is discussed. Datasets from a simulation experiment, an electrical appliance test, and a pneumatic tire test are used to illustrate the procedure.
  • 关键词:Aalen-Johansen estimator;cause-specific cumulative incidence function;cause-specific hazard function;censored data;Kaplan-Meier estimator
国家哲学社会科学文献中心版权所有