首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Comparison of MCMC Methods for Estimating GARCH Models
  • 本地全文:下载
  • 作者:Manabu Asai
  • 期刊名称:JOURNAL OF THE JAPAN STATISTICAL SOCIETY
  • 印刷版ISSN:1882-2754
  • 电子版ISSN:1348-6365
  • 出版年度:2006
  • 卷号:36
  • 期号:2
  • 页码:199-212
  • DOI:10.14490/jjss.36.199
  • 出版社:JAPAN STATISTICAL SOCIETY
  • 摘要:This paper reviews several MCMC methods for estimating the class of ARCH models, and compare performances of them. With respect to the mixing, efficiency and computational requirement of the MCMC, this paper found the best method is the tailored approach based on the acceptance-rejection Metropolis-Hastings algorithm.
  • 关键词:Bayesian inference;GARCH;Gibbs sampler;Markov chain Monte Carlo;Metropolis-Hastings algorithm
国家哲学社会科学文献中心版权所有