首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Bayesian Analysis of a Markov Switching Stochastic Volatility Model
  • 本地全文:下载
  • 作者:Mai Shibata ; Toshiaki Watanabe
  • 期刊名称:JOURNAL OF THE JAPAN STATISTICAL SOCIETY
  • 印刷版ISSN:1882-2754
  • 电子版ISSN:1348-6365
  • 出版年度:2005
  • 卷号:35
  • 期号:2
  • 页码:205-219
  • DOI:10.14490/jjss.35.205
  • 出版社:JAPAN STATISTICAL SOCIETY
  • 摘要:This article analyzes a Markov switching stochastic volatility (MSSV) model to accommodate the shift in the mean of log-volatility. Since it is difficult to estimate the parameters in this model based on the maximum likelihood method, a Bayesian Markov-chain Monte Carlo (MCMC) approach is adopted. A particle filter for the MSSV model, which is used for model comparison and diagnostics, is constructed. The estimation result, based on weekly returns of the TOPIX, confirms the finding by previous researchers that the estimate of the persistence parameter drops and the estimate of the error variance rises in the volatility equation of the MSSV model compared to those of the standard SV model. The model comparison provides evidence that the MSSV model is favored over the standard SV model. It is also found that the MSSV model passes the diagnostic tests based on the statistics obtained from the particle filter while the SV model does not.
  • 关键词:marginal likelihood;Markov-chain Monte Carlo;Markov switching;particle filter;stochastic volatility;TOPIX
国家哲学社会科学文献中心版权所有