首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Evolutionary divergence of duplicated genomes in newly described allotetraploid cottons
  • 本地全文:下载
  • 作者:Renhai Peng ; Yanchao Xu ; Shilin Tian
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:39
  • DOI:10.1073/pnas.2208496119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Wild relatives of domesticated plants provide a rich resource for crop improvement and a valuable comparative perspective for understanding genomic, physiological, and agricultural traits. Here, we provide high-quality reference genomes of one early domesticated form of the economically most important cotton species, Gossypium hirsutum, and two other wild species, to clarify evolutionary relationships and understand the genomic changes that characterize these species and their close relatives. We document abundant gene resources involved in adaptation to environmental challenges, highlighting the potential for introgression of favorable genes into domesticated cotton and for increasing resilience to climate variability. Our study complements other recent genomic analyses in the cotton genus and provides a valuable foundation for breeding improved cotton varieties. Allotetraploid cotton ( Gossypium) species represents a model system for the study of plant polyploidy, molecular evolution, and domestication. Here, chromosome-scale genome sequences were obtained and assembled for two recently described wild species of tetraploid cotton, Gossypium ekmanianum [(AD) 6, Ge] and Gossypium stephensii [(AD) 7, Gs], and one early form of domesticated Gossypium hirsutum, race punctatum [(AD) 1, Ghp]. Based on phylogenomic analysis, we provide a dated whole-genome level perspective for the evolution of the tetraploid Gossypium clade and resolved the evolutionary relationships of Gs, Ge, and domesticated G. hirsutum. We describe genomic structural variation that arose during Gossypium evolution and describe its correlates—including phenotypic differentiation, genetic isolation, and genetic convergence—that contributed to cotton biodiversity and cotton domestication. Presence/absence variation is prominent in causing cotton genomic structural variations. A presence/absence variation-derived gene encoding a phosphopeptide-binding protein is implicated in increasing fiber length during cotton domestication. The relatively unimproved Ghp offers the potential for gene discovery related to adaptation to environmental challenges. Expanded gene families enoyl-CoA δ isomerase 3 and RAP2-7 may have contributed to abiotic stress tolerance, possibly by targeting plant hormone-associated biochemical pathways. Our results generate a genomic context for a better understanding of cotton evolution and for agriculture.
  • 关键词:entetraploid cottonpolyploid dynamicsstructure variationsadaptive evolution
国家哲学社会科学文献中心版权所有