首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Photovoltaic effect by soft phonon excitation
  • 本地全文:下载
  • 作者:Yoshihiro Okamura ; Takahiro Morimoto ; Naoki Ogawa
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:14
  • DOI:10.1073/pnas.2122313119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance The quantum-mechanical geometric phase of electrons provides various phenomena such as the dissipationless photocurrent generation through the shift current mechanism. So far, the photocurrent generations are limited to above or near the band-gap photon energy, which contradicts the increasing demand of the low-energy photonic functionality. We demonstrate the photocurrent through the optical phonon excitations in ferroelectric BaTiO 3 by using the terahertz light with photon energy far below the band gap. This photocurrent without electron-hole pair generation is never explained by the semiclassical treatment of electrons and only arises from the quantum-mechanical geometric phase. The observed photon-to-current conversion efficiency is as large as that for electronic excitation, which can be well accounted for by newly developed theoretical formulation of shift current. Photodetection is an indispensable function of optoelectronic devices in modern communication and sensing systems. Contrary to the near-infrared/visible regions, the fast and sensitive photodetectors operated at room temperature for the far-infrared/terahertz regions are not well developed despite a possibly vast range of applications. The bulk photovoltaic effect (BPVE) in single-phase, noncentrosymmetric materials based on the shift current mechanism enables less-dissipative energy conversion endowed with instantaneous responsivity owing to the quantum-mechanical geometric phase of electronic states. Nevertheless, the small–band-gap material for the low-energy BPVE inevitably suffers from the thermal noise due to the intrinsically high conductivity. Here, we demonstrate the shift current induced by soft-phonon excitations without creation of electron-hole pairs in the archetypal ferroelectric BaTiO 3 by using the terahertz light, whose energy scale is three orders of magnitude smaller than the electronic band gap. At and above room temperature, we observe appreciable photocurrents caused by the soft-phonon excitation as large as that for electronic excitation and their strong phonon-mode dependence. The observed phonon-driven BPVE can be well accounted for by the shift current model, considering the electron–phonon coupling in the displacement-type ferroelectrics, as supported by the first-principles calculation. Our findings establish the efficient quantum BPVE arising from low-energy elementary excitations, suggesting the principle for the high-performance terahertz photodetectors.
  • 关键词:enbulk photovoltaic effectterahertz opticsshift currentferroelectrics
国家哲学社会科学文献中心版权所有