首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Predicting Unsteady Indoor Temperature Distributions by POD-DNN
  • 本地全文:下载
  • 作者:Chenghao Wei ; Ryozo Ooka ; Bingchao Zhang
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2022
  • 卷号:356
  • 页码:1-4
  • DOI:10.1051/e3sconf/202235604028
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:In this study, to predict unsteady temperature distributions, POD-DNN was utilized, where DNN was trained to predicted coefficients of POMs. Two strategies, flatten POD-DNN and nested POD-DNN were compared. The flatten POD-DNN provided high accuracy if training data is sufficient, but otherwise very inaccurate. The nested POD-DNN roughly predicted the development of temperature fields even training data was small. The results showed their different sensitivities to the training data size.
国家哲学社会科学文献中心版权所有