首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Soft-sensing Modeling of SMB Chromatographic Separation Process Based on ELM with Variable Excitation Functions
  • 本地全文:下载
  • 作者:Qing-Da Yang ; Yu Liu ; Jie-Sheng Wang
  • 期刊名称:Engineering Letters
  • 印刷版ISSN:1816-093X
  • 电子版ISSN:1816-0948
  • 出版年度:2022
  • 卷号:30
  • 期号:2
  • 页码:835-846
  • 语种:English
  • 出版社:Newswood Ltd
  • 摘要:SMB chromatography (simulated moving bed chromatography) is a separation science. T he soft measurement modeling approach of SMB chromatographic separation process based on extreme learning machine (ELM) with variable excitation function was introduced as a method for determining component fineness and harvest of extract and residue. The soft-sensor model's supplemental variables, as well as the crucial economic and cultural forecasting indices, were chosen after reviewing the technique of SMB chromatographic separation. Second, five excitation functions (Sig Sin, Har dlim,Tribas, and Radbas) are being used in the ELM neural network to generate the soft- sensor model, and the quantity of neurons in the hidden stratum of the ELM is determined.The simulation experiments consequences indicate that ELM neural network can availably achieve the accurate forecasting of key economic and technical indicators and fulfill the real-fime,efficient and robust operation of SMB chromatographic separation process.
  • 关键词:SMB chromatographic separation;soft- sensing;extreme learning machine;excitation function
国家哲学社会科学文献中心版权所有