首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Approximating solutions of the Chemical Master equation using neural networks
  • 本地全文:下载
  • 作者:Augustinas Sukys ; Kaan Öcal ; Ramon Grima
  • 期刊名称:iScience
  • 印刷版ISSN:2589-0042
  • 出版年度:2022
  • 卷号:25
  • 期号:9
  • 页码:1-22
  • DOI:10.1016/j.isci.2022.105010
  • 语种:English
  • 出版社:Elsevier
  • 摘要:SummaryThe Chemical Master Equation (CME) provides an accurate description of stochastic biochemical reaction networks in well-mixed conditions, but it cannot be solved analytically for most systems of practical interest. Although Monte Carlo methods provide a principled means to probe system dynamics, the large number of simulations typically required can render the estimation of molecule number distributions and other quantities infeasible. In this article, we aim to leverage the representational power of neural networks to approximate the solutions of the CME and propose a framework for the Neural Estimation of Stochastic Simulations for Inference and Exploration (Nessie). Our approach is based on training neural networks to learn the distributions predicted by the CME from relatively few stochastic simulations. We show on biologically relevant examples that simple neural networks with one hidden layer can capture highly complex distributions across parameter space, thereby accelerating computationally intensive tasks such as parameter exploration and inference.Graphical abstractDisplay OmittedHighlights•We approximate solutions of the Chemical Master Equation using neural networks•Simple networks suffice to learn complex distributions over a wide parameter range•Neural emulation can significantly speed up parameter exploration and inferenceComputational chemistry; Biological sciences; Biochemistry; Systems biology; Complex systems
国家哲学社会科学文献中心版权所有