首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Moving Horizon Estimator with filtering and adaptive sampling
  • 本地全文:下载
  • 作者:Federico Oliva ; Daniele Carnevale
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:16
  • 页码:320-325
  • DOI:10.1016/j.ifacol.2022.09.044
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractOptimisation based algorithms known asMoving Horizon Estimator(MHE) have been developed through the years. In this work, we propose two solutions to decrease the computational cost of MHE, limiting its applicability in real-time applications. The proposed solutions rely on output filtering and adaptive sampling. The use of filters reduces the total amount of data by shortening the length of the moving window (buffer) and consequently decreasing the time consumption for plant dynamics integration. The proposed adaptive sampling policy allows for discarding data that do not yield significant improvements in the estimation error. Simulations on several cases are provided to corroborate the effectiveness of the proposed strategies.
  • 关键词:KeywordsAdaptive observerNonlinear systemsMoving Horizon Estimator
国家哲学社会科学文献中心版权所有