摘要:Optical lattices (OLs) with conventional spatial periodic λ/2, formed by interfering the counterpropagating laser beams with wavelength λ, are versatile tools to study the dynamical and static properties of ultracold atoms. OLs with subwavelength spatial structure have been realized in recent quantum-gas experiment, offering new possibility for nonlinear and quantum control of ultracold atoms at the nano scale. Herein, we study theoretically and numerically the formation, property, and dynamics of matter-wave localized gap modes of Bose–Einstein condensates loaded in a one-dimensional nanoscale dark-state OL consisted of an array of optical subwavelength barriers. The nonlinear localized modes, in the forms of on- and off-site fundamental gap solitons, and dipole ones, are demonstrated; and we uncover that, counterintuitively, these modes exhibit always a cusplike (side peaks) mode even for a deeply subwavelength adiabatic lattice, contrary to the previously reported results in conventional deep OLs where the localized gap modes are highly confined in a single lattice cell. The (in)stability features of all the predicted localized modes are verified through the linear-stability analysis and direct perturbed simulations. Our predicted results are attainable in current ultracold atoms experiments with the cutting-edge technique, pushing the nonlinear control of ultracold atoms with short-period OLs as an enabling technology into subwavelength structures.