首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:A survey on PSO based meta-heuristic scheduling mechanism in cloud computing environment
  • 本地全文:下载
  • 作者:Arabinda Pradhan ; Sukant Kishoro Bisoy ; Amardeep Das
  • 期刊名称:Journal of King Saud University @?C Computer and Information Sciences
  • 印刷版ISSN:1319-1578
  • 出版年度:2022
  • 卷号:34
  • 期号:8
  • 页码:4888-4901
  • 语种:English
  • 出版社:Elsevier
  • 摘要:With the increasing of the scale of task or request and dynamic nature of cloud resources, it gives significant issues of load balancing, resource utilization, task allocation, and system performance and so on. To solve those problems many researchers have applied different types of scheduling techniques. But meta-heuristic scheduling is the most accomplish preferred outcomes over conventional heuristics and hybrid scheduling. Among various meta-heuristics algorithms, PSO is a famous metaheuristic technique to solved optimization issue. PSO is appropriate for dynamic task scheduling, workflow scheduling and load balancing. PSO has a strong worldwide searching capability toward the start of the run and a nearby pursuit close to the furthest limit of the run. Therefore, it has been generally utilized in different applications and has made incredible progress. In this paper a systematically reviews is done on different types of particle swarm optimization (PSO) based scheduling strategy with set of challenges and future direction.
国家哲学社会科学文献中心版权所有