期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2022
卷号:119
期号:34
DOI:10.1073/pnas.2206096119
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Swimming bacterial pathogens can penetrate and shape the membranes of their host cells. We study an artificial model system of this kind comprising
Escherichia coli enclosed inside vesicles, which consist of nothing more than a spherical membrane bag. The bacteria push out membrane tubes, and the tubes propel the vesicles. This phenomenon is intriguing because motion cannot be generated by pushing the vesicles from within. We explain the motility of our artificial cell by a shape coupling between the flagella of each bacterium and the enclosing membrane tube. This constitutes a design principle for conferring motility to cell-sized vesicles and demonstrates the universality of lipid membranes as a building block in the development of new biohybrid systems.
We study a synthetic system of motile
Escherichia coli bacteria encapsulated inside giant lipid vesicles. Forces exerted by the bacteria on the inner side of the membrane are sufficient to extrude membrane tubes filled with one or several bacteria. We show that a physical coupling between the membrane tube and the flagella of the enclosed cells transforms the tube into an effective helical flagellum propelling the vesicle. We develop a simple theoretical model to estimate the propulsive force from the speed of the vesicles and demonstrate the good efficiency of this coupling mechanism. Together, these results point to design principles for conferring motility to synthetic cells.