首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Lymphangiogenesis contributes to exercise-induced physiological cardiac growth
  • 本地全文:下载
  • 作者:Yihua Bei ; Zhenzhen Huang ; Xing Feng
  • 期刊名称:Journal of Sport and Health Science
  • 印刷版ISSN:2095-2546
  • 出版年度:2022
  • 卷号:11
  • 期号:4
  • 页码:466-478
  • DOI:10.1016/j.jshs.2022.02.005
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Highlights • Cardiac lymphangiogenesis is required for exercise-induced physiological cardiac growth by VEGFR3 activation, while exercise-induced myocardial hypertrophy and increased proliferation marker in cardiomyocytes are altered by VEGFR3 inhibition. • Lymphatic endothelial cell (LEC)-conditioned medium promotes both hypertrophy and proliferation of cardiomyocytes in a VEGFR3-dependent manner. IGF-1 and RELN may serve as potential mediators in the crosstalk between LECs and cardiomyocytes. • AKT activation and the C/EBPβ–CITED4 axis contribute to the effect of LEC-conditioned medium on cardiomyocytes. • Cardiac lymphangiogenesis contributes to exercise-induced physiological cardiac growth, and may promote further investigations of the potential contribution of lymphangiogenesis in exercise-mediated myocardial protection. Background Promoting cardiac lymphangiogenesis exerts beneficial effects for the heart. Exercise can induce physiological cardiac growth with cardiomyocyte hypertrophy and increased proliferation markers in cardiomyocytes. However, it remains unclear whether and how lymphangiogenesis contributes to exercise-induced physiological cardiac growth. We aimed to investigate the role and mechanism of lymphangiogenesis in exercise-induced physiological cardiac growth. Methods Adult C57BL6/J mice were subjected to 3 weeks of swimming exercise to induce physiological cardiac growth. Oral treatment with vascular endothelial growth factor receptor 3 (VEGFR3) inhibitor SAR131675 was used to investigate whether cardiac lymphangiogenesis was required for exercise-induced physiological cardiac growth by VEGFR3 activation. Furthermore, human dermal lymphatic endothelial cell (LEC)-conditioned medium was collected to culture isolated neonatal rat cardiomyocytes to determine whether and how LECs could influence cardiomyocyte proliferation and hypertrophy. Results Swimming exercise induced physiological cardiac growth accompanied by a remarkable increase of cardiac lymphangiogenesis as evidenced by increased density of lymphatic vessel endothelial hyaluronic acid receptor 1–positive lymphatic vessels in the heart and upregulated LYVE-1 and Podoplanin expressions levels. VEGFR3 was upregulated in the exercised heart, while VEGFR3 inhibitor SAR131675 attenuated exercise-induced physiological cardiac growth as evidenced by blunted myocardial hypertrophy and reduced proliferation marker Ki67 in cardiomyocytes, which was correlated with reduced lymphatic vessel density and downregulated LYVE-1 and Podoplanin in the heart upon exercise. Furthermore, LEC-conditioned medium promoted both hypertrophy and proliferation of cardiomyocytes and contained higher levels of insulin-like growth factor-1 and the extracellular protein Reelin, while LEC-conditioned medium from LECs treated with SAR131675 blocked these effects. Functional rescue assays further demonstrated that protein kinase B (AKT) activation, as well as reduced CCAAT enhancer-binding protein beta (C/EBPβ) and increased CBP/p300-interacting transactivators with E (glutamic acid)/D (aspartic acid)–rich-carboxylterminal domain 4 (CITED4), contributed to the promotive effect of LEC-conditioned medium on cardiomyocyte hypertrophy and proliferation. Conclusion Our findings reveal that cardiac lymphangiogenesis is required for exercise-induced physiological cardiac growth by VEGFR3 activation, and they indicate that LEC-conditioned medium promotes both physiological hypertrophy and proliferation of cardiomyocytes through AKT activation and the C/EBPβ-CITED4 axis. These results highlight the essential roles of cardiac lymphangiogenesis in exercise-induced physiological cardiac growth. Graphical abstract Image, graphical abstract
  • 关键词:KeywordsenCardiac lymphaticsExercisePhysiological cardiac hypertrophyProliferationVEGFR3
国家哲学社会科学文献中心版权所有