首页    期刊浏览 2024年12月15日 星期日
登录注册

文章基本信息

  • 标题:Selective Amplification of Plasmonic Sensor Signal for Cortisol Detection Using Gold Nanoparticles
  • 本地全文:下载
  • 作者:Gaye Ezgi Yılmaz ; Yeşeren Saylan ; Ilgım Göktürk
  • 期刊名称:Biosensors
  • 电子版ISSN:2079-6374
  • 出版年度:2022
  • 卷号:12
  • 期号:7
  • DOI:10.3390/bios12070482
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:Herein, gold nanoparticles (AuNP)-modified cortisol-imprinted (AuNP-MIP) plasmonic sensor was developed for signal amplification and real-time cortisol determination in both aqueous and complex solutions. Firstly, the sensor surfaces were modified with 3-(trimethoxylyl)propyl methacrylate and then pre-complex was prepared using the functional monomer N-methacryloyl-L-histidine methyl ester. The monomer solution was made ready for polymerization by adding 2-hydroxyethyl methacrylate to ethylene glycol dimethacrylate. In order to confirm the signal enhancing effect of AuNP, only cortisol-imprinted (MIP) plasmonic sensor was prepared without AuNP. To determine the selectivity efficiency of the imprinting process, the non-imprinted (AuNP-NIP) plasmonic sensor was also prepared without cortisol. The characterization studies of the sensors were performed with atomic force microscopy and contact angle measurements. The kinetic analysis of the AuNP-MIP plasmonic sensor exhibited a high correlation coefficient (R 2 = 0.97) for a wide range (0.01–100 ppb) with a low detection limit (0.0087 ppb) for cortisol detection. Moreover, the high imprinting efficiency (k′ = 9.67) of the AuNP-MIP plasmonic sensor was determined by comparison with the AuNP-NIP plasmonic sensor. All kinetic results were validated and confirmed by HPLC.
  • 关键词:cortisol detection;gold nanoparticles;molecular imprinting;plasmonic sensor
国家哲学社会科学文献中心版权所有