首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Boltzmann Machines with Bounded Continuous Random Variables
  • 本地全文:下载
  • 作者:Muneki YASUDA ; Kazuyuki TANAKA
  • 期刊名称:Interdisciplinary Information Sciences
  • 印刷版ISSN:1340-9050
  • 电子版ISSN:1347-6157
  • 出版年度:2007
  • 卷号:13
  • 期号:1
  • 页码:25-31
  • DOI:10.4036/iis.2007.25
  • 出版社:The Editorial Committee of the Interdisciplinary Information Sciences
  • 摘要:We propose a Boltzmann machine formulated as a probabilistic model where every random variable takes bounded continuous values, and we derive the Thouless–Anderson–Palmer equation for the model. The proposed model includes the non-negative Boltzmann machine and the Sherrington–Kirkpatrick model with spin- S at S →∞ as a special case. It is known that the Sherrington–Kirkpatrick model with spin- S has a spin glass phase. Thus, the proposed Boltzmann machine is expected to be able to learn practical complex data.
  • 关键词:machine learning;non-negative boltzmann machine;Plefka expansion;TAP equation;SK model
国家哲学社会科学文献中心版权所有