摘要:Energy systems are becoming increasingly exposed to the impacts of weather and climate due to the uptake of renewable generation and the electrification of the heat and transport sectors. The need for high-quality meteorological data to manage present and near-future risks is urgent. This paper provides a comprehensive set of multi-decadal, time series of hourly meteorological variables and weather-dependent power system components for use in the energy systems modelling community. Despite the growing interest in the impacts of climate variability and climate change on energy systems over the last decade, it remains rare for multi-decadal simulations of meteorological data to be used within detailed simulations. This is partly due to computational constraints, but also due to technical barriers limiting the use of meteorological data by non-specialists. This paper presents a new European-level dataset which can be used to investigate the impacts of climate variability and climate change on multiple aspects of near-future energy systems. The datasets correspond to a suite of well-documented, easy-to-use, self-consistent, hourly- and nationally aggregated, and sub-national time series for 2 m temperature, 10 m wind speed, 100 m wind speed, surface solar irradiance, wind power capacity factor, solar power factor, and degree days spanning over 30 European countries. This dataset is available for the historical period 1950–2020 and is accessible from https://doi.org/10.17864/1947.000321 (Bloomfield and Brayshaw, 2021a).