首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Mixture Ratio Estimators Using Multi-Auxiliary Variables and Attributes for Two-Phase Sampling
  • 本地全文:下载
  • 作者:Paul Mwangi Waweru , John Kung’u , James Kahiri
  • 期刊名称:Open Journal of Statistics
  • 印刷版ISSN:2161-718X
  • 电子版ISSN:2161-7198
  • 出版年度:2014
  • 卷号:04
  • 期号:09
  • 页码:776-788
  • DOI:10.4236/ojs.2014.49073
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:In this paper, we have proposed three classes of mixture ratio estimators for estimating population mean by using information on auxiliary variables and attributes simultaneously in two-phase sampling under full, partial and no information cases and analyzed the properties of the estimators. A simulated study was carried out to compare the performance of the proposed estimators with the existing estimators of finite population mean. It has been found that the mixture ratio estimator in full information case using multiple auxiliary variables and attributes is more efficient than mean per unit, ratio estimator using one auxiliary variable and one attribute, ratio estimator using multiple auxiliary variable and multiple auxiliary attributes and mixture ratio estimators in both partial and no information case in two-phase sampling. A mixture ratio estimator in partial information case is more efficient than mixture ratio estimators in no information case.
  • 关键词:Ratio Estimator; Multiple Auxiliary Variables; Multiple Auxiliary Attributes; Two-Phase Sampling; Bi-Serial Correlation Coefficient
国家哲学社会科学文献中心版权所有