首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Real-time Likelihood-free Inference of Roman Binary Microlensing Events with Amortized Neural Posterior Estimation
  • 本地全文:下载
  • 作者:Keming Zhang ; Joshua S.Bloom ; B.Scott Gaudi
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2021
  • 卷号:161
  • 期号:6
  • 页码:1-11
  • DOI:10.3847/1538-3881/abf42e
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:Fast and automated inference of binary-lens, single-source (2L1S) microlensing events with sampling-based Bayesian algorithms (e.g., Markov Chain Monte Carlo, MCMC) is challenged on two fronts: the high computational cost of likelihood evaluations with microlensing simulation codes, and a pathological parameter space where the negative-log-likelihood surface can contain a multitude of local minima that are narrow and deep. Analysis of 2L1S events usually involves grid searches over some parameters to locate approximate solutions as a prerequisite to posterior sampling, an expensive process that often requires human-in-the-loop domain expertise. As the next-generation, space-based microlensing survey with the Roman Space Telescope is expected to yield thousands of binary microlensing events, a new fast and automated method is desirable. Here, we present a likelihood-free inference approach named amortized neural posterior estimation, where a neural density estimator (NDE) learns a surrogate posterior as an observation-parameterized conditional probability distribution, from pre-computed simulations over the full prior space. Trained on 291,012 simulated Roman-like 2L1S simulations, the NDE produces accurate and precise posteriors within seconds for any observation within the prior support without requiring a domain expert in the loop, thus allowing for real-time and automated inference. We show that the NDE also captures expected posterior degeneracies. The NDE posterior could then be refined into the exact posterior with a downstream MCMC sampler with minimal burn-in steps.
国家哲学社会科学文献中心版权所有