首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Resonant Chains of Exoplanets: Libration Centers for Three-body Angles
  • 本地全文:下载
  • 作者:Jared C.Siegel ; Daniel Fabrycky
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2021
  • 卷号:161
  • 期号:6
  • 页码:1-9
  • DOI:10.3847/1538-3881/abf8a6
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:Resonant planetary systems contain at least one planet pair with orbital periods librating at a near-integer ratio (2/1, 3/2, 4/3, etc.) and are a natural outcome of standard planetary formation theories. Systems with multiple adjacent resonant pairs are known as resonant chains and can exhibit three-body resonances—characterized by a critical three-body angle. Here we study three-body angles as a diagnostic of resonant chains through tidally damped N-body integrations. For each combination of the 2:1, 3:2, 4:3, and 5:4 mean motion resonances (the most common resonances in the known resonant chains), we characterize the three-body angle equilibria for several mass schemes, migration timescales, and initial separations. We find that under our formulation of the three-body angle, which does not reduce coefficients, 180° is the preferred libration center, and libration centers shifted away from 180° are associated with nonadjacent resonances. We then relate these angles to observables, by applying our general results to two transiting systems: Kepler-60 and Kepler-223. For these systems, we compare N-body models of the three-body angle to the zeroth order in e approximation accessible via transit phases, used in previous publications. In both cases, we find the three-body angle during the Kepler observing window is not necessarily indicative of the long-term oscillations and stress the role of dynamical models in investigating three-body angles. We anticipate our results will provide a useful diagnostic in the analysis of resonant chains.
国家哲学社会科学文献中心版权所有