首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Optimal Control of Combined-Cycle Power Plants: A Data-Enabled Predictive Control Perspective
  • 本地全文:下载
  • 作者:Pouya Mahdavipour ; Christoph Wieland ; Hartmut Spliethoff
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:13
  • 页码:91-96
  • DOI:10.1016/j.ifacol.2022.07.241
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this work, we propose an optimal control strategy as the unit control for combined-cycle power generation units. Using the same optimal control, we propose to optimize other internal control structures. Data-Enabled Predictive Control is chosen as the optimal control problem formulation, as it does not require a parametric state-space representation of the system. This bypasses the challenging and expensive-to-solve issue of parametric modeling and linearization for highly nonlinear systems. The performance of the controller is investigated in several critical operational scenarios, such as load-following for frequency control and disturbance rejection. Simulation results in Apros®, which is an environment dedicated to advanced process simulation, are presented.
  • 关键词:KeywordsData-Enabled Predictive ControlPower NetworksFlexibilityPower Plant ControlFrequency ControlLoad Cycling
国家哲学社会科学文献中心版权所有