期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2022
卷号:119
期号:29
DOI:10.1073/pnas.2204536119
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
How organelles and vesicles are severed to generate daughter structures is a major question in membrane biology. The ESCRTs CHMP1 and IST1 were previously shown by cryo-EM to tightly constrict tubes, leading to the hypothesis that they could mediate severing of tubular endosomes. We determined that the activity of the VPS4 and spastin ATPases is insufficient to trigger scission. We show that membrane scission does occur under dynamical tube extension, showing that friction-driven scission is operative under these conditions, consistent with a biological role for CHMP1B and IST1 in tubular endosome severing.
The endosomal sorting complexes required for transport (ESCRT) system is an ancient and ubiquitous membrane scission machinery that catalyzes the budding and scission of membranes. ESCRT-mediated scission events, exemplified by those involved in the budding of HIV-1, are usually directed away from the cytosol (“reverse topology”), but they can also be directed toward the cytosol (“normal topology”). The ESCRT-III subunits CHMP1B and IST1 can coat and constrict positively curved membrane tubes, suggesting that these subunits could catalyze normal topology membrane severing. CHMP1B and IST1 bind and recruit the microtubule-severing AAA
+ ATPase spastin, a close relative of VPS4, suggesting that spastin could have a VPS4-like role in normal-topology membrane scission. Here, we reconstituted the process in vitro using membrane nanotubes pulled from giant unilamellar vesicles using an optical trap in order to determine whether CHMP1B and IST1 are capable of membrane severing on their own or in concert with VPS4 or spastin. CHMP1B and IST1 copolymerize on membrane nanotubes, forming stable scaffolds that constrict the tubes, but do not, on their own, lead to scission. However, CHMP1B–IST1 scaffolded tubes were severed when an additional extensional force was applied, consistent with a friction-driven scission mechanism. We found that spastin colocalized with CHMP1B-enriched sites but did not disassemble the CHMP1B–IST1 coat from the membrane. VPS4 resolubilized CHMP1B and IST1 without leading to scission. These observations show that the CHMP1B–IST1 ESCRT-III combination is capable of severing membranes by a friction-driven mechanism that is independent of VPS4 and spastin.