首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Power Curve-Based Fault Detection Method for Wind Turbines
  • 本地全文:下载
  • 作者:Francisco Bilendo ; Hamed Badihi ; Ningyun Lu
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:6
  • 页码:408-413
  • DOI:10.1016/j.ifacol.2022.07.163
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractA normal behavior model based on a boosted stacked regressor, trained in a k-fold crossvalidation with optimal power curve data, is proposed for wind turbine fault detection. In order to obtain the optimal power curve data, a signal processing scheme based on density-based spatial clustering of applications with noise, along with a robust estimation algorithm are employed, from which an upper-lower bound envelop is established. The experimental results based on real wind turbine data from supervisory control and data acquisition system indicate the effectiveness and impact of the proposed method in practical applications
  • 关键词:KeywordsPower curvewind turbinefault detectionSCADAnormal behavior model
国家哲学社会科学文献中心版权所有