首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Effect of gaseous ozone treatment on biofilm of dairy-isolated Pseudomonas spp. strains
  • 本地全文:下载
  • 作者:Felice Panebianco ; Selene Rubiola ; Francesco Chiesa
  • 期刊名称:Italian Journal of Food Safety
  • 电子版ISSN:2239-7132
  • 出版年度:2022
  • 卷号:11
  • 期号:2
  • DOI:10.4081/ijfs.2022.10350
  • 语种:English
  • 出版社:PAGEPress Publications
  • 摘要:Microbial biofilms existing in food industries have been implicated as important contamination sources of spoilage and pathogenic microorganisms in the finished products. Among the innovative strategies proposed to contrast biofilms in food environments, ozone is recognised as an environmentally friendly technology but there are few studies about its effect against bacterial biofilms. The objective of this study was to evaluate the effect of gaseous ozone (50 ppm for 6 h) in inhibition and eradication of biofilm formed by twenty-one dairyisolated Pseudomonas spp. strains. Before ozone treatments, all isolates were screened for biofilm formation according to a previously described method. Strains were then divided in four groups: weak, weak/moderate, moderate/strong, and strong biofilm producers based on the biofilm biomass value of each isolate determined using the optical density (OD - 595 nm). Inhibition treatment was effective on the strain (C1) belonging to the weak producers’ group, on all strains classified as weak/moderate producers, on two strains (C8 and C12) belonging to the group of moderate/strong producers and on one strain (C13) classified as strong producer. Conversely, eradication treatments were ineffective on all strains tested, except for the strain C4 which reduced its biofilm-forming abilities after exposure to ozone gas. In conclusion, gaseous ozone may be used to enhance existing sanitation protocols in food processing environments, but its application alone not seems sufficient to contrast Pseudomonas spp. established biofilms.
  • 关键词:Key wordsenPseudomonas sppBiofilmOzoneDairyFood safety
国家哲学社会科学文献中心版权所有