首页    期刊浏览 2025年02月14日 星期五
登录注册

文章基本信息

  • 标题:Respiratory complex I with charge symmetry in the membrane arm pumps protons
  • 本地全文:下载
  • 作者:Franziska Hoeser ; Hannes Tausend ; Sinja Götz
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:27
  • DOI:10.1073/pnas.2123090119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Respiratory complex I is a central enzyme of cellular energy metabolism coupling quinone reduction with proton translocation. Its mechanism, especially concerning proton translocation, remains enigmatic. Three homologous subunits that contain a conserved pattern of charged and polar amino acid residues catalyze proton translocation. Strikingly, the central subunit NuoM contains a conserved glutamate residue at a position where conserved lysine residues are found in the other two subunits, resulting in a charge asymmetry discussed to be essential for proton translocation. We found that the respective glutamate to lysine mutation in Escherichia coli complex I lowers the amount of protons translocated per electron transferred by one-quarter. These data clarify the discussion about possible mechanisms of proton translocation by complex I. Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, is essential for cellular energy metabolism coupling NADH oxidation to proton translocation. The mechanism of proton translocation by complex I is still under debate. Its membrane arm contains an unusual central axis of polar and charged amino acid residues connecting the quinone binding site with the antiporter-type subunits NuoL, NuoM, and NuoN, proposed to catalyze proton translocation. Quinone chemistry probably causes conformational changes and electrostatic interactions that are propagated through these subunits by a conserved pattern of predominantly lysine, histidine, and glutamate residues. These conserved residues are thought to transfer protons along and across the membrane arm. The distinct charge distribution in the membrane arm is a prerequisite for proton translocation. Remarkably, the central subunit NuoM contains a conserved glutamate residue in a position that is taken by a lysine residue in the two other antiporter-type subunits. It was proposed that this charge asymmetry is essential for proton translocation, as it should enable NuoM to operate asynchronously with NuoL and NuoN. Accordingly, we exchanged the conserved glutamate in NuoM for a lysine residue, introducing charge symmetry in the membrane arm. The stably assembled variant pumps protons across the membrane, but with a diminished H +/e − stoichiometry of 1.5. Thus, charge asymmetry is not essential for proton translocation by complex I, casting doubts on the suggestion of an asynchronous operation of NuoL, NuoM, and NuoN. Furthermore, our data emphasize the importance of a balanced charge distribution in the protein for directional proton transfer.
  • 关键词:enbiological energy conversionrespiratory chaincomplex INADH dehydrogenaseproton translocation
国家哲学社会科学文献中心版权所有