期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2022
卷号:13
期号:2
DOI:10.14569/IJACSA.2022.0130279
语种:English
出版社:Science and Information Society (SAI)
摘要:Wifi Fingerprinting is a widely used method for indoor positioning due to its proven accuracy. However, the offline phase of the method requires collecting a large quantity of data which costs a lot of time and effort. Furthermore, interior changes in the environment can have impact on system accuracy. This paper addresses the issue by proposing a new data collecting procedure in the offline phase that only needs to collect some data points (Wi-fi reference point). To have a sufficient amount of data for the offline phase, we proposed a genetic algorithm and machine learning model to generate labeled data from unlabeled user data. The experiment was carried out using real Wi-fi data collected from our testing site and the simulated motion data. Results have shown that using the proposed method and only 8 Wi-fi reference points, labeled data can be generated from user’s live data with a positioning error of 1.23 meters in the worst case when motion error is 30%. In the online phase, we achieved a positioning error of 1.89 meters when using the Support Vector Machine model at 30% motion error.