首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:A Proposed Framework for Big Data Analytics in Higher Education
  • 本地全文:下载
  • 作者:Beenu Mago ; Nasreen Khan
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2021
  • 卷号:12
  • 期号:7
  • DOI:10.14569/IJACSA.2021.0120778
  • 语种:English
  • 出版社:Science and Information Society (SAI)
  • 摘要:Students, faculties, and other members of the higher education (HEd) system are increasingly reliant on various information technologies. Such a reliance results in a plethora of data that can be explored to obtain relevant statistics or insights. Another reason to explore the data is to acquire valuable insight regarding the novel unstructured forms of data that are discovered and often found to have a connection with elements of social media such as pictures, videos, Web pages, audio files, etc. Moreover, the data can bring additional valuable benefits when processed in the context of HEd. When used strategically, Big Data (BD) provides educational institutions with the chance to improve the quality of education from all the perspectives and steer students of HEd toward higher rates of completion. Further, this will improve student persistence and results, all of which are facilitated by technology. With this aim, the current research proposes a framework that analyzes the data collected from heterogeneous sources and analyzes using BD analytics tools to do various types of analysis that will be beneficial for different learners, faculties and other members of HEd system. Moreover, current research also focuses on the challenges of acquiring BD from various sources.
  • 关键词:Big data analysis; higher education; learning analytics; academic analytics
国家哲学社会科学文献中心版权所有