首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:A hierarchical RCNN for vehicle and vehicle license plate detection and recognition
  • 本地全文:下载
  • 作者:Chunling Tu ; Shengzhi Du
  • 期刊名称:International Journal of Electrical and Computer Engineering
  • 电子版ISSN:2088-8708
  • 出版年度:2022
  • 卷号:12
  • 期号:1
  • 页码:731-737
  • DOI:10.11591/ijece.v12i1.pp731-737
  • 语种:English
  • 出版社:Institute of Advanced Engineering and Science (IAES)
  • 摘要:Vehicle and vehicle license detection obtained incredible achievements during recent years that are also popularly used in real traffic scenarios, such as intelligent traffic monitoring systems, auto parking systems, and vehicle services. Computer vision attracted much attention in vehicle and vehicle license detection, benefit from image processing and machine learning technologies. However, the existing methods still have some issues with vehicle and vehicle license plate recognition, especially in a complex environment. In this paper, we propose a multivehicle detection and license plate recognition system based on a hierarchical region convolutional neural network (RCNN). Firstly, a higher level of RCNN is employed to extract vehicles from the original images or video frames. Secondly, the regions of the detected vehicles are input to a lower level (smaller) RCNN to detect the license plate. Thirdly, the detected license plate is split into single numbers. Finally, the individual numbers are recognized by an even smaller RCNN. The experiments on the real traffic database validated the proposed method. Compared with the commonly used all-in-one deep learning structure, the proposed hierarchical method deals with the license plate recognition task in multiple levels for sub-tasks, which enables the modification of network size and structure according to the complexity of sub-tasks. Therefore, the computation load is reduced.
  • 关键词:deep learning;region convolution neural network;vehicle detection;vehicle license recognition
国家哲学社会科学文献中心版权所有