首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:A non-negative matrix factorization based clustering to identify potential tuna fishing zones
  • 本地全文:下载
  • 作者:Devi Fitrianah ; Hisyam Fahmi ; Achmad Nizar Hidayanto
  • 期刊名称:International Journal of Electrical and Computer Engineering
  • 电子版ISSN:2088-8708
  • 出版年度:2021
  • 卷号:11
  • 期号:6
  • 页码:5458-5466
  • DOI:10.11591/ijece.v11i6.pp5458-5466
  • 语种:English
  • 出版社:Institute of Advanced Engineering and Science (IAES)
  • 摘要:Many nonnegative matrix factorization based clusterings are employed in discovering pattern and knowledge. Considering the sparseness nature of our data set about the daily tuna fishing data, we attempted to utilize a clustering approach, which is based on non-negative matrix factorization. Adding sparseness constraint and assigning good initial value in the modified NMF method, a proposed algorithm Direct-NMFSC yielded better result cluster compared to other methods which are also utilizing sparse constraint to their approaches, SNMF and NMFSC. The result of this study shows that Direct-NMFSC has 5.376 times of iteration number less than NMFSC in average with 531.97 as the CH index result. The determination of potential fishing zones is one of the essential efforts in the potential fishing zone mapping system for tuna fishing. By means of this novel data-driven study to construct the information and to identify the potential tuna fishing zones is done. We also showed that utilizing the Direct-NMFSC can spot and identify the potential tuna fishing zones presented in red cluster that covers both the spatial and temporal information.
  • 关键词:Clustering;K-means;Nonnegative matrix factorization;Potential fishing zones
国家哲学社会科学文献中心版权所有