首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Salp swarm optimizer for modeling the software fault prediction problem
  • 本地全文:下载
  • 作者:Sofian Kassaymeh ; Salwani Abdullah, Ph.D ; Mohammed Azmi Al-Betar
  • 期刊名称:Journal of King Saud University @?C Computer and Information Sciences
  • 印刷版ISSN:1319-1578
  • 出版年度:2022
  • 卷号:34
  • 期号:6
  • 页码:3365-3378
  • 语种:English
  • 出版社:Elsevier
  • 摘要:This paper proposes the salp swarm algorithm (SSA) combined with a backpropagation neural network (BPNN) to solve the software fault prediction (SFP) problem. The SFP problem is one of the well-known software engineering problems that are concerned with anticipating the software defects that are likely to appear during a software project or thereafter. In order to find the optimal BPNN parameters, a combination of SSA optimizer and BPNN named (SSA-BPNN) is proposed, so as to enhance prediction accuracy. The proposed method is evaluated against several datasets for the SFP problem. These datasets vary in both size and complexity. The results obtained are evaluated using a variety of performance measures (i.e., the AUC, Confusion Matrix, Sensitivity, Specificity, Accuracy, and Error Rate). The results obtained by SSA-BPNN are better than those obtained by the conventional BPNN over all of the datasets. The proposed method also has the ability to outperform several state-of-the-art methods over the same datasets in respect of most of the aforementioned performance measures. Therefore, the hybridization of SSA with BPNN is a valuable addition to the software engineering issues and can be utilized to achieve higher prediction accuracy for a variety of prediction problems.
国家哲学社会科学文献中心版权所有