首页    期刊浏览 2025年02月27日 星期四
登录注册

文章基本信息

  • 标题:Finite-Time Synchronization of Fractional-Order Complex-Valued Cohen-Grossberg Neural Networks with Mixed Time Delays and State-Dependent Switching
  • 本地全文:下载
  • 作者:Xiaoxia Li ; Yingzi Cao ; Chi Zheng
  • 期刊名称:Advances in Mathematical Physics
  • 印刷版ISSN:1687-9120
  • 电子版ISSN:1687-9139
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/4227067
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This paper discussed the finite-time synchronization of fractional-order complex-valued Cohen-Grossberg neural networks (FCVCGNNs), which contain mixed time delays and state-dependent switching that make the model more comprehensive. Different from other methods, we use a method of nonseparating real and imaginary parts to get our conclusions. By applying fractional-order inequalities and the Lyapunov function, effective controllers with suitable conditions are derived. Additionally, the maximum time for the drive-response system to reach synchronization is also given. Finally, numerical examples are designed to illustrate the effectiveness of our obtained theoretical results.
国家哲学社会科学文献中心版权所有