首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:LoRaWAN Based Indoor Localization Using Random Neural Networks
  • 本地全文:下载
  • 作者:Winfred Ingabire ; Hadi Larijani ; Ryan M. Gibson
  • 期刊名称:Information
  • 电子版ISSN:2078-2489
  • 出版年度:2022
  • 卷号:13
  • 期号:6
  • 页码:303
  • DOI:10.3390/info13060303
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:Global Positioning Systems (GPS) are frequently used as a potential solution for localization applications. However, GPS does not work indoors due to a lack of direct Line-of-Sight (LOS) satellite signals received from the End Device (ED) due to thick solid materials blocking the ultra-high frequency signals. Furthermore, fingerprint localization using Received Signal Strength Indicator (RSSI) values is typical for localization in indoor environments. Therefore, this paper develops a low-power intelligent localization system for indoor environments using Long-Range Wide-Area Networks (LoRaWAN) RSSI values with Random Neural Networks (RNN). The proposed localization system demonstrates 98.5% improvement in average localization error compared to related studies with a minimum average localization error of 0.12 m in the Line-of-Sight (LOS). The obtained results confirm LoRaWAN-RNN-based localization systems suitable for indoor environments in LOS applied in big sports halls, hospital wards, shopping malls, airports, and many more with the highest accuracy of 99.52%. Furthermore, a minimum average localization error of 13.94 m was obtained in the Non-Line-of-Sight (NLOS) scenario, and this result is appropriate for the management and control of vehicles in indoor car parks, industries, or any other fleet in a pre-defined area in the NLOS with the highest accuracy of 44.24%.
国家哲学社会科学文献中心版权所有