首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:SOC Estimation of Lithium-Ion Battery for Electric Vehicle Based on Deep Multilayer Perceptron
  • 本地全文:下载
  • 作者:Xueguang Li ; Haizhou Jiang ; Sufen Guo
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/3920317
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The state of charge (SOC) is one of the main indexes of the lithium-ion battery, which affects the practice range of new energy vehicles and the safety of the battery. Nevertheless, the value of SOC cannot be measured directly. At present, the algorithm for estimating the state of charge is not very satisfactory. The multilayer perceptron algorithm designed during this paper encompasses a sensible impact on state estimation. During this paper, the multilayer network is designed to estimate the charged state of lithium batteries from the three-layer artificial neural network to the eleven-layer artificial neural network. After preprocessing the dataset and comparing several activation functions, the ten-layer fully connected neural network is the most efficient to estimate the SOC. In order to prevent over-fitting of the multilayer perceptron algorithm, the two techniques of the BatchNormalization layer and Dropout layer work together to inhibit over-fitting. At the same time, the accuracy of extended Kalman filter, long and short memory network, and recurrent neural network are compared. The multilayer perceptron network designed during this paper has the highest accuracy. Finally, in the open dataset, both the training and test errors achieve good results. The algorithm developed in this paper has made some progress in SOC estimation.
国家哲学社会科学文献中心版权所有