首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Network Anomaly Traffic Detection Algorithm Based on RIC-SC-DeCN
  • 本地全文:下载
  • 作者:Xingyu Gong ; Ke Cao ; Na Li
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/8315442
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In the research of network abnormal traffic detection, in view of the characteristics of high dimensionality and redundancy in traffic data and the loss of original information caused by the pooling operation in the convolutional neural network, which leads to the problem of unsatisfactory detection effect, this paper proposes a network abnormal traffic detection algorithm based on RIC-SC-DeCN to improve the above problems. Firstly, a recursive information correlation (RIC) feature selection mechanism is proposed, which reduces data redundancy through the maximum information correlation feature selection algorithm and recursive feature elimination method. Secondly, a skip-connected deconvolutional neural network model (SC-DeCN) is proposed to reduce the information loss by reconstructing the input signal. Finally, the RIC mechanism and the SC-DeCN model are merged to form a network abnormal traffic detection algorithm based on RIC-SC-DeCN. The experimental results on the CIC-IDS-2017 dataset show that the RIC feature selection mechanism proposed in this paper has the highest accuracy when using MSCNN as the detection model compared to the other three, which can reach 96.22%. Compared with the other five models, the SC-DeCN model has the highest detection accuracy, while the model training time is moderate and can reach 96.55%. Compared with the SC-DeCN model, the RIC-SC-DeCN model reduces the overall training time by 45.50%, while the accuracy rate is increased to 97.68%. It shows that the algorithm proposed in this paper has a good detection effect in the detection of network abnormal traffic.
国家哲学社会科学文献中心版权所有