摘要:An important point for computer systems is the identification of users for authentication. One of these identification methods is keystroke dynamics. The keystroke dynamics is a biometric measurement in terms of keystroke press duration and keystroke latency. However, several problems are arisen like the similarity between users and identification accuracy. In this paper, we propose innovative model that can help to solve the problem of similar user by classifying user’s data based on a membership function. Next, we employ sequence alignment as a way of pattern discovery from the user’s typing behaviour. Experiments were conducted to evaluate accuracy of the proposed model. The results show high performance compared to standard classifiers in terms of accuracy and precision.