首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Predicting Differences in Model Parameters with Individual Parameter Contribution Regression Using the R Package ipcr
  • 本地全文:下载
  • 作者:Manuel Arnold ; Andreas M. Brandmaier ; Manuel C. Voelkle
  • 期刊名称:Psych
  • 电子版ISSN:2624-8611
  • 出版年度:2021
  • 卷号:3
  • 期号:3
  • 页码:360-385
  • DOI:10.3390/psych3030027
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Unmodeled differences between individuals or groups can bias parameter estimates and may lead to false-positive or false-negative findings. Such instances of heterogeneity can often be detected and predicted with additional covariates. However, predicting differences with covariates can be challenging or even infeasible, depending on the modeling framework and type of parameter. Here, we demonstrate how the individual parameter contribution (IPC) regression framework, as implemented in the R package ipcr, can be leveraged to predict differences in any parameter across a wide range of parametric models. First and foremost, IPC regression is an exploratory analysis technique to determine if and how the parameters of a fitted model vary as a linear function of covariates. After introducing the theoretical foundation of IPC regression, we use an empirical data set to demonstrate how parameter differences in a structural equation model can be predicted with the ipcr package. Then, we analyze the performance of IPC regression in comparison to alternative methods for modeling parameter heterogeneity in a Monte Carlo simulation.
国家哲学社会科学文献中心版权所有