摘要:The person-centered approach in categorical data analysis is introduced as a complementary approach to the variable-centered approach. The former uses persons, animals, or objects on the basis of their combination of characteristics which can be displayed in multiway contingency tables. Configural Frequency Analysis (CFA) and log-linear modeling (LLM) are the two most prominent (and related) statistical methods. Both compare observed frequencies (foi…k) with expected frequencies (fei…k). While LLM uses primarily a model-fitting approach, CFA analyzes residuals of non-fitting models. Residuals with significantly more observed than expected frequencies (foi…k>fei…k) are called types, while residuals with significantly less observed than expected frequencies (foi…k