首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:A Swarm Intelligence Graph-Based Pathfinding Algorithm Based on Fuzzy Logic (SIGPAF): A Case Study on Unmanned Surface Vehicle Multi-Objective Path Planning
  • 本地全文:下载
  • 作者:Charis Ntakolia ; Dimitrios V. Lyridis
  • 期刊名称:Journal of Marine Science and Engineering
  • 电子版ISSN:2077-1312
  • 出版年度:2021
  • 卷号:9
  • 期号:11
  • 页码:1243
  • DOI:10.3390/jmse9111243
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Advances in robotic motion and computer vision have contributed to the increased use of automated and unmanned vehicles in complex and dynamic environments for various applications. Unmanned surface vehicles (USVs) have attracted a lot of attention from scientists to consolidate the wide use of USVs in maritime transportation. However, most of the traditional path planning approaches include single-objective approaches that mainly find the shortest path. Dynamic and complex environments impose the need for multi-objective path planning where an optimal path should be found to satisfy contradicting objective terms. To this end, a swarm intelligence graph-based pathfinding algorithm (SIGPA) has been proposed in the recent literature. This study aims to enhance the performance of SIGPA algorithm by integrating fuzzy logic in order to cope with the multiple objectives and generate quality solutions. A comparative evaluation is conducted among SIGPA and the two most popular fuzzy inference systems, Mamdani (SIGPAF-M) and Takagi–Sugeno–Kang (SIGPAF-TSK). The results showed that depending on the needs of the application, each methodology can contribute respectively. SIGPA remains a reliable approach for real-time applications due to low computational effort; SIGPAF-M generates better paths; and SIGPAF-TSK reaches a better trade-off among solution quality and computation time.
国家哲学社会科学文献中心版权所有