首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Identifying the Relatedness between Tourism Attractions from Online Reviews with Heterogeneous Information Network Embedding
  • 本地全文:下载
  • 作者:Peiyuan Qiu ; Jialiang Gao ; Feng Lu
  • 期刊名称:ISPRS International Journal of Geo-Information
  • 电子版ISSN:2220-9964
  • 出版年度:2021
  • 卷号:10
  • 期号:12
  • 页码:797
  • DOI:10.3390/ijgi10120797
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:The relatedness between tourism attractions can be used in a variety of tourism applications, such as destination collaboration, commercial marketing, travel recommendations, and so on. Existing studies have identified the relatedness between attractions through measuring their co-occurrence—these attractions are mentioned in a text at the same time—extracted from online tourism reviews. However, the implicit semantic information in these reviews, which definitely contributes to modelling the relatedness from a more comprehensive perspective, is ignored due to the difficulty of quantifying the importance of different dimensions of information and fusing them. In this study, we considered both the co-occurrence and images of attractions and introduce a heterogeneous information network (HIN) to reorganize the online reviews representing this information, and then used HIN embedding to comprehensively identify the relatedness between attractions. First, an online review-oriented HIN was designed to form the different types of elements in the reviews. Second, a topic model was employed to extract the nodes of the HIN from the review texts. Third, an HIN embedding model was used to capture the semantics in the HIN, which comprehensively represents the attractions with low-dimensional vectors. Finally, the relatedness between attractions was identified by calculating the similarity of their vectors. The method was validated with mass tourism reviews from the popular online platform MaFengWo. It is argued that the proposed HIN effectively expresses the semantics of attraction co-occurrences and attraction images in reviews, and the HIN embedding captures the differences in these semantics, which facilitates the identification of the relatedness between attractions.
国家哲学社会科学文献中心版权所有