期刊名称:ISPRS International Journal of Geo-Information
电子版ISSN:2220-9964
出版年度:2021
卷号:10
期号:12
页码:803
DOI:10.3390/ijgi10120803
语种:English
出版社:MDPI AG
摘要:Previous VideoGIS integration methods mostly used geographic homography mapping. However, the related processing techniques were mainly for independent cameras and the software architecture was C/S, resulting in large deviations in geographic video mapping for small scenes, a lack of multi-camera video fusion, and difficulty in accessing real-time information with WebGIS. Therefore, we propose real-time web map construction based on the object height and camera posture (RTWM-HP for short). We first consider the constraint of having a similar height for each object by constructing an auxiliary plane and establishing a high-precision homography matrix (HP-HM) between the plane and the map; thus, the accuracy of geographic video mapping can be improved. Then, we map the objects in the multi-camera video with overlapping areas to geographic space and perform the object selection with the multi-camera (OS-CDD) algorithm, which includes the confidence of the object, the distance, and the angle between the objects and the center of the cameras. Further, we use the WebSocket technology to design a hybrid C/S and B/S software framework that is suitable for WebGIS integration. Experiments were carried out based on multi-camera videos and high-precision geospatial data in an office and a parking lot. The case study’s results show the following: (1) The HP-HM method can achieve the high-precision geographic mapping of objects (such as human heads and cars) with multiple cameras; (2) the OS-CDD algorithm can optimize and adjust the positions of the objects in the overlapping area and achieve a better map visualization effect; (3) RTWM-HP can publish real-time maps of objects with multiple cameras, which can be browsed in real time through point layers and hot-spot layers through WebGIS. The methods can be applied to some fields, such as person or car supervision and the flow analysis of customers or traffic passengers.