首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Metric-Type Identification for Multi-Level Header Numerical Tables in Scientific Papers
  • 本地全文:下载
  • 作者:Lya Hulliyyatus Suadaa ; Hidetaka Kamigaito ; Manabu Okumura
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2021
  • 卷号:2021
  • 页码:3062-3071
  • DOI:10.18653/v1/2021.eacl-main.267
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:Numerical tables are widely used to present experimental results in scientific papers. For table understanding, a metric-type is essential to discriminate numbers in the tables. We introduce a new information extraction task, metric-type identification from multi-level header numerical tables, and provide a dataset extracted from scientific papers consisting of header tables, captions, and metric-types. We then propose two joint-learning neural classification and generation schemes featuring pointer-generator-based and BERT-based models. Our results show that the joint models can handle both in-header and out-of-header metric-type identification problems.
国家哲学社会科学文献中心版权所有