首页    期刊浏览 2025年01月24日 星期五
登录注册

文章基本信息

  • 标题:How Certain is YourTransformer?
  • 本地全文:下载
  • 作者:Artem Shelmanov ; Evgenii Tsymbalov ; Dmitri Puzyrev
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2021
  • 卷号:2021
  • 页码:1833-1840
  • DOI:10.18653/v1/2021.eacl-main.157
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:In this work, we consider the problem of uncertainty estimation for Transformer-based models. We investigate the applicability of uncertainty estimates based on dropout usage at the inference stage (Monte Carlo dropout). The series of experiments on natural language understanding tasks shows that the resulting uncertainty estimates improve the quality of detection of error-prone instances. Special attention is paid to the construction of computationally inexpensive estimates via Monte Carlo dropout and Determinantal Point Processes.
国家哲学社会科学文献中心版权所有