首页    期刊浏览 2025年03月03日 星期一
登录注册

文章基本信息

  • 标题:On the application of Transformers for estimating the difficulty of Multiple-Choice Questions from text
  • 本地全文:下载
  • 作者:Luca Benedetto ; Giovanni Aradelli ; Paolo Cremonesi
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2021
  • 卷号:2021
  • 页码:147-157
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:Classical approaches to question calibration are either subjective or require newly created questions to be deployed before being calibrated. Recent works explored the possibility of estimating question difficulty from text, but did not experiment with the most recent NLP models, in particular Transformers. In this paper, we compare the performance of previous literature with Transformer models experimenting on a public and a private dataset. Our experimental results show that Transformers are capable of outperforming previously proposed models. Moreover, if an additional corpus of related documents is available, Transformers can leverage that information to further improve calibration accuracy. We characterize the dependence of the model performance on some properties of the questions, showing that it performs best on questions ending with a question mark and Multiple-Choice Questions (MCQs) with one correct choice.
国家哲学社会科学文献中心版权所有