首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:“PageRank” for Argument Relevance
  • 本地全文:下载
  • 作者:Henning Wachsmuth ; Benno Stein ; Yamen Ajjour
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2017
  • 卷号:2017
  • 页码:1117-1127
  • 语种:Danish
  • 出版社:ACL Anthology
  • 摘要:Future search engines are expected to deliver pro and con arguments in response to queries on controversial topics. While argument mining is now in the focus of research, the question of how to retrieve the relevant arguments remains open. This paper proposes a radical model to assess relevance objectively at web scale: the relevance of an argument’s conclusion is decided by what other arguments reuse it as a premise. We build an argument graph for this model that we analyze with a recursive weighting scheme, adapting key ideas of PageRank. In experiments on a large ground-truth argument graph, the resulting relevance scores correlate with human average judgments. We outline what natural language challenges must be faced at web scale in order to stepwise bring argument relevance to web search engines.
国家哲学社会科学文献中心版权所有