首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Unsupervised Dialogue Act Induction usingGaussian Mixtures
  • 本地全文:下载
  • 作者:Tomáš Brychcín ; Pavel Král
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2017
  • 卷号:2017
  • 页码:485-490
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:This paper introduces a new unsupervised approach for dialogue act induction. Given the sequence of dialogue utterances, the task is to assign them the labels representing their function in the dialogue. Utterances are represented as real-valued vectors encoding their meaning. We model the dialogue as Hidden Markov model with emission probabilities estimated by Gaussian mixtures. We use Gibbs sampling for posterior inference. We present the results on the standard Switchboard-DAMSL corpus. Our algorithm achieves promising results compared with strong supervised baselines and outperforms other unsupervised algorithms.
国家哲学社会科学文献中心版权所有