首页    期刊浏览 2025年01月21日 星期二
登录注册

文章基本信息

  • 标题:ParsingUniversalDependencies without training
  • 本地全文:下载
  • 作者:Héctor Martínez Alonso ; Željko Agić ; Barbara Plank
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2017
  • 卷号:2017
  • 页码:230-240
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:We present UDP, the first training-free parser for Universal Dependencies (UD). Our algorithm is based on PageRank and a small set of specific dependency head rules. UDP features two-step decoding to guarantee that function words are attached as leaf nodes. The parser requires no training, and it is competitive with a delexicalized transfer system. UDP offers a linguistically sound unsupervised alternative to cross-lingual parsing for UD. The parser has very few parameters and distinctly robust to domain change across languages.
国家哲学社会科学文献中心版权所有