首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:An Algorithm for Time Prediction Signal Interference Detection Based on the LSTM-SVM Model
  • 本地全文:下载
  • 作者:Ningbo Xiao ; Zuxun Song
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/1626458
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Interference detection is an important part of the electronic defense system. It is difficult to detect interference with the traditional method of extracting characteristic parameters for interference generated at the same frequency as the original signal. Aiming at this special time-frequency overlapping interference signal, this paper proposes an interference detection algorithm based on the long short-term memory-support vector machines (LSTM-SVM) model. LSTM is used for the time series prediction of the received signal. The difference between the predicted signal and the received signal is used as the feature sample, and the SVM algorithm is used to classify the feature samples to obtain the recognition rate of whether the sample has interference. The LSTM-SVM model is compared with the gate recurrent unit-support vector machines (GRU-SVM) model, and the comparison results are visualized using a confusion matrix. The simulation results show that this LSTM-SVM model algorithm cannot only detect the existence of the interference signal but also can determine the specific position of the interference signal in the received waveform, and the detection performance is better than the GRU-SVM model.
国家哲学社会科学文献中心版权所有