摘要:Data mining technology is more and more widely used in the daily load forecasting of natural gas systems. It is still difficult to carry out high-precision, timely intraday load forecasting and intraday load dynamic characteristics clustering for natural gas systems. Based on data mining technology, this paper proposes a stable intraday load forecasting method for the natural gas flow state-space model. The load sensitivity under the current operating conditions of the system is obtained by calculation; the sample space of the state space is established through data processing; the partitions under different clustering radii are calculated; and the best intraday load flow is obtained through the state space effectiveness evaluation method. The experimental results show that the model load forecasting accuracy and relative error reached 98.5% and 0.026, respectively, which solved the problem of processing the long-term accumulated historical data of gas intra-day load. At the same time, the amount of data calculation was reduced by 33.6%, which effectively promoted the quantification of intraday load influencing factors and qualitative analysis.