首页    期刊浏览 2025年03月01日 星期六
登录注册

文章基本信息

  • 标题:Computational Intelligence Approaches in Developing Cyberattack Detection System
  • 本地全文:下载
  • 作者:Mohammed Saeed Alzahrani ; Fawaz Waselallah Alsaade
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/4705325
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The Internet plays a fundamental part in relentless correspondence, so its applicability can decrease the impact of intrusions. Intrusions are defined as movements that unfavorably influence the focus of a computer. Intrusions may sacrifice the reputability, integrity, privacy, and accessibility of the assets attacked. A computer security system will be traded off when an intrusion happens. The novelty of the proposed intelligent cybersecurity system is its ability to protect Internet of Things (IoT) devices and any networks from incoming attacks. In this research, various machine learning and deep learning algorithms, namely, the quantum support vector machine (QSVM), k-nearest neighbor (KNN), linear discriminant and quadratic discriminant long short-term memory (LSTM), and autoencoder algorithms, were applied to detect attacks from signature databases. The correlation method was used to select important network features by finding the features with a high-percentage relationship between the dataset features and classes. As a result, nine features were selected. A one-hot encoding method was applied to convert the categorical features into numerical features. The validation of the system was verified by employing the benchmark KDD Cup database. Statistical analysis methods were applied to evaluate the results of the proposed study. Binary and multiple classifications were conducted to classify the normal and attack packets. Experimental results demonstrated that KNN and LSTM algorithms achieved better classification performance for developing intrusion detection systems; the accuracy of KNN and LSTM algorithms for binary classification was 98.55% and 97.28%, whereas the KNN and LSTM attained a high accuracy for multiple classification (98.28% and 970.7%). Finally, the KNN and LSTM algorithms are fitting-based intrusion detection systems.
国家哲学社会科学文献中心版权所有