首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Dual-Path Residual “Shrinkage” Network for Side-Scan Sonar Image Classification
  • 本地全文:下载
  • 作者:Fengxue Ruan ; Lanxue Dang ; Qiang Ge
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/6962838
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The underwater environment is complicated and changeable and contains many noises, making it difficult to detect a particular object in the underwater environment. At present, the main seabed detection technology explores the seabed environment with sonar equipment. However, the characteristics of underwater sonar imaging (e.g., low contrast, blurred edges, poor texture, and unsatisfactory quality) have serious negative influences on such image classification. Therefore, in this study, we propose a dual-path deep residual “shrinkage” network (DP-DRSN) module, which is a simple and effective neural network attention module that can classify side-scan sonar images. Specifically, the module can extract background and feature texture information of the input feature mapping through different scales (e.g., global average pooling and global max pooling), whereas scale information passes through a two-layer 1 × 1 convolution to increase nonlinearity. This helps realize cross-channel information interaction and information integration simultaneously before outputting threshold parameters in a sigmoid layer. The parameters are then multiplied by the average value of the input feature mapping to obtain a threshold, which is used to denoise the image features using the soft threshold function. The proposed DP-DRSN study provided higher classification accuracy and efficiency than other models. In this way, the feasibility and effectiveness of DP-DRSN in image classification of side-scan sonar are proven.
国家哲学社会科学文献中心版权所有