首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A Machine Learning Approach for the Detection of QRS Complexes in Electrocardiogram (ECG) Using Discrete Wavelet Transform (DWT) Algorithm
  • 本地全文:下载
  • 作者:Ali Rizwan ; P Priyanga ; Emad H. Abualsauod
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/9023478
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This study describes a modified approach for the detection of cardiac abnormalities and QRS complexes using machine learning and support vector machine (SVM) classifiers. The suggested technique overtakes prevailing approaches in terms of both sensitivity and specificity, with 0.45 percent detection error rate for cardiac irregularities. Moreover, the vector machine classifiers validated the proposed method's superiority by accurately categorising four ECG beat types: normal, LBBBs, RBBBs, and Paced beat. The technique had 96.67 percent accuracy in MLP-BP and 98.39 percent accuracy in support of vector machine classifiers. The results imply that the SVM classifier can play an important role in the analysis of cardiac abnormalities. Furthermore, the SVM classifier also categorises ECG beats using DWT characteristics collected from ECG signals.
国家哲学社会科学文献中心版权所有